Sim2Biped: Enhancing Mobility of a Wheeled Biped
via Sim-to-Real Transfer of an RL Controller

Gabrael Levine* Selena Sun*
Dept of Computer Science Dept of Computer Science
gabrael@cs.stanford.edu selenas@cs.stanford.edu

Abstract

Legged robots have been shown to achieve remarkable maneuverability across
complex terrains. Recent work in quadrupeds has demonstrated capability in
navigating rocky terrain and rapidly adapting its gait to new ground physics.
Despite such progress, research focused on wheel-legged locomotion, particularly
for wheeled bipedal systems, remains less explored, creating a gap in our
understanding of the effectiveness of learning-based control for this morphology.
Wheel-legged robots have the advantage of having simpler, more energy-efficient
locomotion on smooth terrains, while being adaptable to rough terrains.

In this work, we demonstrate sim-to-real transfer of a reinforcement learning (RL)
controller on a wheeled biped (Rhea), trained using Proximal Policy Optimization
(PPO) in Nvidia’s Isaac Gym simulation environment. [Rhea is an agile wheeled
biped robot designed to enable embodied Al and human-robot interaction research,
designed and built by the authors. In addition to PPO, we use curriculum learning in
Isaac Gym to increase the policy’s robustness and speed of convergence. The robot
is first given a smooth sloped terrain, then rough sloped terrain and discrete steps.
Upon sim-to-real transfer, we show that the RL controller is capable of stepping
over taller ledges and traverse ramps, as compared to the linear controller. Specifi-
cally, the linear controller trips on ledges 21mm tall, whereas the RL controller
only fails on ledges 49mm tall. Moreoever, the RL controller successfully scales
aramp with base angle of 15 degrees, whereas the linear controller fails on this task.

Our work shows that reinforcement learning is an effective means of designing
controllers for varied terrain. We prove that PPO with curriculum learning is a
viable strategy for producing a policy that works on a real-world robot.

https://github.com/G-Levine/Rhea

1 Introduction

1.1 Motivation

Wheel-Legged Morphology

Agile ground robots have enabled a diverse array of new robotic applications, including in-
spection [1], construction, warehouse manipulation, and even public safety [2]. Ground robots are a
uniquely good form factor for the above tasks, since they are capable of having long battery life, high
reliability, and quick navigation.

Up until the past three years, most of legged locomotion has been focused on "leg and foot"
locomotion, as seen in Boston Dynamics’ Spot robot [2]. More recently, industry has seen the rise of
wheeled robots, most notably with Ascento Robotics’ wheeled biped [1], and some industry research
on wheeled quadrupeds [3]. The motivation of adding wheels to these legged robots is to enable fast
and stable movements on smooth ground, while allowing for dynamic legged adjustments in rough or
complex terrain. Comparing the 1X wheeled robot (Eve) [4] to the Tesla Optimus robot, we see clear
tradeoffs between the two morphologies: Eve is more stable and faster, but is constrained to moving
on a flat floor. On the other hand, Optimus is slower, but is (supposedly) capable of stepping over
obstacles and going up stairs. By building wheel-legged robots, practitioners aim to combine the
benefits of both morphologies.

Reinforcement Learning

We chose to experiment with an RL controller. There are several advantages RL offers
over methods like optimal control and imitation learning. Unlike optimal control methods that often
rely on precise models of the system and the terrain, RL can learn effective locomotion strategies
through trial and error. This flexibility allows the wheeled biped to adapt to varying rough terrain
conditions, including unknown or dynamically changing environments. While imitation learning
requires expert demonstrations, RL can discover novel and potentially superior locomotion strategies
by actively exploring the space of possible actions and learning from the resulting consequences.
This capacity for exploration allows the wheeled biped to discover new ways to handle rough
terrains, potentially outperforming human-designed strategies. Lastly, classical control approaches
often struggle to capture the complex dynamics and nonlinearities associated with rough terrain
locomotion.

1.2 Prior Work

RL for Legged Locomotion

We choose to use a state of the art RL method, Proximal Policy Optimization (PPO), which clips the
objective function to prevent large policy updates [5]. PPO has been shown to significantly improve
the stability and sample efficiency of RL agents.

The field of RL for legged locomotion has seen major advances in recent years. Notably, the Rapid
Motor Adaptation algorithm solves the problem of real-time terrain adaptation for quadrupeds,
making it robust to rocky, slippery, and deformable terrain [6]. We chose not to use RMA, since we
think PPO would suffice for the tasks we were aiming for. There has also been some work to learn
quadruped gaits using imitation learning from animal videos [7], but since there is no real-world
animal with wheels, this was not viable. Some work has also been done to increase the safety of
deploying RL policy on real-world systems, notably by switching between a safe recovery policy and
a learner policy [8].

Wheeled-Legged Locomotion
A nontrivial amount of wheeled biped research has been done for the Ascento robot. For
example, one study attempted to use LQR for full-body control of the robot [9].

Some work has been done to better model the wheeled biped system. Xin et al. attempted MPC on
a wheeled biped, modeling it as a Cart-Linear Inverted Pendulum [11]. Chen et al. used quadratic

programming to devise a jumping motion path for a wheeled biped, inventing a model called wheeled-
spring-loaded inverted pendulum to characterize the biped’s dynamics [12].

2 Implementation

2.1 Robot

Rhea (Figure[Ta) is a wheeled bipedal robot designed and built by Gabrael Levine (the author). The
robot is 3D printed using carbon fiber-nylon (PA-CF) filament. The onboard compute is a Raspberry
Pi 4, and the robot is powered via a DeWalt battery. The robot additionally has an RGBD sensor (via
an onboard Oak-D Pro W camera) and a microphone, but we didn’t use these sensing modalities for
our locomotion experiments. Rhea has two legs, and each leg has 2 DoF. There is one motor at the

hip, and another motor at the wheel. An approximate straight-line linkage couples the rotation of the
knee to the rotation of the hip, roughly constraining the end of the leg to move only in the vertical
axis.

(a) Rhea Rendering (b) Rhea URDF
Figure 1: Rhea Rendering and URDF

2.2 Simulation: Isaac Gym

Nvidia’s Isaac Gym is a robust simulation environment designed for robotic reinforcement learning
research. It has fairly precise physics, which has alleviated the inaccuracies sim-to-real transfer.

First, we created Rhea’s URDF (Figure [Ib) by importing the CAD model into Blender. Initially, we
added an artificial revolute joint at the knee, since there currently isn’t a way to represent the linkage
system in a URDF. However, we soon realized that the policy would output torque commands to a
joint that didn’t exist on the robot, rendering the policy useless. So, we removed the legs entirely, and
created a constraint where the wheel would move on a vertical axis proportional to the rotation of the
hip motor.

Secondly, we worked with ETH Zurich’s legged_gym| repository, and wrote configuration
files for Rhea (modified code). The action space has dimension four, and contains the ac-
tions: [right_leg_position, right_wheel_velocity, left_leg_position, left_wheel_velocity]. The
observation space has dimension 21, and contains [base_angular velocity, gravity_vector,
commanded_linear_velocity, commanded_yaw_velocity, joint_positions, joint_velocities, previ-
ous_actions].

Third, we adjusted terrain parameters to train on increasingly hard terrain (curriculum learning). The
available terrains are: smooth slope, rough slope, stairs up, stairs down, and discrete. For the final
policy we deployed on the robot, the terrain proportions were: 40% smooth slope, 30% rough slope,
and 30% discrete steps. The curriculum learning terrain was created as follows: we first create a 8x8
grid. The terrains would be randomly distributed throughout the grid at the given proportions. The

https://github.com/leggedrobotics/legged_gym
https://github.com/G-Levine/legged_gym/tree/master/legged_gym/envs

slopes and step size of each grid is set to be proportional to the row number:

slope — row number L 04
8 rows

b
step height = fow umber, 0.18 +0.05
8 rows

The slopes of the smooth and rough terrain therefore ranges from 0.05 to 0.4. The sizes of the discrete
steps ranges from 0.0725 meters to 0.23 meters. These numbers were given as default values in the
original legged_gym repository. A visualization of the terrain can be seen in Figure

e
e

L
G

a

Figure 2: Curriculum Learning Terrain

Lastly, we trained the policy with PPO. The actor and critic networks both used hidden layers of sizes
512, 256, and 128, in addition to an LSTM layer of size 512. The policy was conditioned on desired
forward velocity and turning velocity.

2.3 Sim-to-Real Transfer
2.3.1 System Identification

We conducted system identification to build an accurate model of the robot. We first measured
the mass of each link of the robot, incorporating it into the URDF model. Then, to account for
inaccuracies in our center-of-mass estimate (crucial for balancing), we measured the pitch angle at
which the robot was balanced, and compensated for it in our policy deployment code.

2.3.2 Domain Randomization

In keeping with common practice for sim-to-real transfer for locomotion RL, we applied domain
randomization to the robot’s mass (+-0.25kg) and friction coefficients (0.5-1.5). To further encourage
robustness, random velocity perturbations of up to 0.5m/s were applied to the robot every 15 seconds
while the policy was training.

2.3.3 Policy Deployment

We ran the policy on the robot’s onboard Raspberry Pi 4 computer. The policy inference thread
receives observations from and sends actions to the robot’s low-level control thread at 50hz. ROS2
messages were used for inter-process communication.

3 Results

3.1 Simulation Results

We conducted a series of experiments in Isaac Gym. We first trained Rhea to walk on flat ground,
then increased terrain difficulty. For all these experiments, we domain randomized the robot’s mass
and friction properties.

1) Flat Ground (Figure [3a] Average reward =9.7, mean episode length = 1021, learning iterations =
2000, number of environments = 1500): We trained Rhea in simulation without any terrain features.
This was to prove basic functionality and revealed that we needed to reconfigure the URDF.

2) Rough Terrain (Figure [3b] Average reward = 28.4, mean episode length = 988, learning iterations
=500, number of environments = 8000): We noticed that on flat ground, Rhea learned to stand on
one leg, which is undesirable behavior. We then trained Rhea on rough terrain, which mitigated the
behavior.

3) Curriculum Learning - Sloped Rough Terrain (Figure Average reward = 19.1, mean episode
length = 956, learning iterations = 500, number of environments = 8000): Curriculum learning
enabled Rhea to climb steeper slopes (slope = 0.4).

4) Curriculum Learning - Rough Terrain and Small Steps (Figure [3d] Average reward =, mean
episode length = 924, learning iterations = 500, number of environments = 8000): Curriculum
learning enabled Rhea to step up small ledges (>70mm), as well as traverse sloped terrain.

v
- ' A 2 .
; » b e
B LSS s Y. X ape
N —
v " o @,
y () |]
3 P Y %
‘ " A g

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3 (d) Experiment 4

Figure 3: Simulation Experiments

We chose one most promising model from experiment 4 to transfer to the robot (torque, position,
and velocity shown in Figure). The model we chose showed stable locomotion in simulation.
Interestingly, it seemed to have learned an oscillating motion. We hypothesize it’s to stabilize itself
on rough sloped terrains (the oscillating was alleviated when rough slopes were removed from the
terrain). The policy also learned to make the robot lift its feet when presented with a ledge. This
behavior enabled it to traverse taller ledges than the linear controller.

ol Figure 1 A - DOX
Base velocity x Base velocity . Base velocity yaw
T 021 7 517
£ 0.2 /\ £ E
To1{— measureg .0 1 ~h~<,¢*q? s L_g A
£ — commanged —— measured @ —— measured
] N =054] L1
E 0.0 {— == v :v \ commandé] ;10 commanded
o DOF Ppsition ; o Joint VETocity: oBase vglocity z;
20 1 —— measure: 04

Wiy E
|— measure&\
’j"—- target z

VY ™ [
LR Vo \m\—zo—

0.2 1

0.0 4

Position [rad]

—— measured

T
c
8
b
VelFical Contact for eBIgue/velqeity caryes ¢ orque 5

— force & | | x measured | || — measured

s0 411 —— force §

1 | 04

| e
’(‘(‘ T T T

0 ;8 2 =20 0 1 2

time [s] Joint vel [rad/s] time [s]

Forces z [N]

_ —
f

Jpint| Torque [Rm)|
&

Jpint Torque
&

I
o
©

Figure 4: Simulation Results

3.2 Real World Results
We conducted a series of real world experiments on the robot, testing its ability to roll over ledges
without falling, and to climb up smooth slopes.

Rolling Over Ledges

These ledges were constructed by stacking magazines (7mm thick) on top of each other for the 7mm,
14mm, and 21mm heights, and textbooks for the 37mm and 49mm heights. We tested each controller
at least 3x for each ledge height, both at the same velocity (approx. 0.5m/s).

We define ’success’ to be the act of traversing over the ledge at 0.5m/s and stabilizing after the
traversal.

Table 1: Performance Rolling Over Obstacles

Obstacle Height | Linear Controller (Baseline) | RL Controller

Omm (flat ground) Success Success
7mm Success Success
14mm Success Success
21mm Failure Success
37mm Failure Success
49mm Failure Failure

Figure 5: Rhea Successfully Traversing a Ledge, Using the RL Controller

The RL controller performed much better than the linear controller, and was able to roll over ledges
more than twice the height that the linear controller could handle. The RL controller only failed at
49mm, when the robot couldn’t lift its leg over the textbook. A visualization of the RL controller
successfully completing the task can be seen in Figure [5

Climbing Slopes

We constructed ramps of the following slopes and tested each controller type 3x on each slope.

We define ’success’ to be the act of getting to the top of the ramp without falling.

Table 2: Performance on Slopes

Slope Linear Controller (Baseline) | RL Controller
0 (flat ground) Success Success
0.1 Success Success
0.25 Failure Success
0.40 Failure Failure

Figure 6: Rhea Successfully Scaling the Ramp, Using the RL Controller

The RL controller performed better than the linear controller at steeper slopes. The RL controller
caused the robot to oscillate while going up the slope, which provided more stability. At sloped 0.40,
the robot fell forward. The failure mode of the linear controller was also the robot falling forward.

4 Conclusions

We have proven that the RL controller makes the robot much less likely to fall on slopes and when
traversing ledges. This is due to a few behaviors the robot learned in simulation, including lifting
a leg momentarily and oscillating. We have successfully demonstrated that using reinforcement
learning in simulation, then performing sim-to-real transfer, is an effective way to design a controller
more robust to varied terrains. To our knowledge, we’ve also been the first to demonstrate sim-to-real
transfer of PPO on a wheeled biped (or at the very least a 3D printed wheeled biped robot).

4.1 Limitations

Our policy currently doesn’t use vision input, despite the presence of an RGBD vision sensor on the
robot. It can only detect the presence of obstacles through proprioception (i.e. bumping into things),
which sometimes results in a loss of stability. This limits the maximum traversable obstacle height to
40mm.

4.2 Future Work

Our most immediate next step would be to perform additional reward tuning to penalize high-
frequency actions. Currently, the robot sometimes kicks a leg repeatedly, which is undesirable
behavior, and could be unsafe. Once we retrain the policy, we’d like to conduct real-world experiments
on a wider range of terrains, such as traversing over gravel, navigating through tanbark, etc. We’d
also like to experiment with giving the robot vision and depth sensor inputs.

S Contributions and Acknowledgements

5.1 Contributions

5.1.1 Gabrael Levine
1. Created the URDF model for Rhea

. Implemented IsaacGym training code for Rhea

. Trained policies

. Implemented policy deployment code for the real robot
. Conducted ledge traversal experiments on the real robot
. Edited the final report

AN L AW

5.1.2 Selena Sun

. IsaacGym and VNC setup

. Tuned terrain for curriculum learning
. Trained policies

. Conducted ledge and ramp traversal experiments on the real robot

wn AW N =

. Wrote and edited the final report. Conducted lit review and produced figures.

5.2 Acknowledgements
5.2.1 Rafael Rafailov (CS224R project mentor)

Suggested adding LSTMs to the policy, which ended up significantly improving sim-to-real transfer
performance.

5.2.2 Wenhao Yu (Google DeepMind)

Provided advice on reward tuning for locomotion RL.

5.2.3 Zipeng Fu (SAIL)

Provided advice on system identification and debugging sim-to-real transfer.

References

[1] Hutter, M., Diethelm, R., Bachmann, S., Fankhauser, P., Gehring, C., Tsounis, V., et al. "Towards a generic
solution for inspection of industrial sites." ETH Zurich 2017 11th Conference on Field and Service Robotics
(FSR), 2017.

[2] Boston Dynamics. "Products." https://www.bostondynamics.com/products.

[3] Bjelonic, Mark. IEEE Robotics and Automation Letters. Preprint Version ... - Marko Bjelonic,
www.markobjelonic.com/publications/files/2020,alp jelonic.pdf . Accessed13 June2023.

[4] 1X Technologies. "Eve." https://www.1x.tech/eve.

[5] Schulman, John, et al. “Proximal Policy Optimization Algorithms.” arXiv.org, 28 Aug. 2017,
arxiv.org/abs/1707.06347.

[6] Kumar, Ashish, et al. "RMA: Rapid Motor Adaptation for Legged Robots." https://ashish-kmr.github.io/rma-
legged-robots, 2021.

[7] Peng, Xue Bin, and Patrick M. Wensing. "Learning Agile Robotic Locomotion Skills by Imitating Ani-
mals." https://www.semanticscholar.org/paper/Learning-Agile-Robotic-Locomotion-Skills-by-Animals-Peng-
Coumans/1803722f786b901a744bc363c0ebdc51902ceceb.

[8] Yang, Tsung-Yen, et al. "Safe Reinforcement Learning for Legged Locomotion." arXiv.org, 5 March 2022.
arxiv.org/abs/2203.02638.

[9] Klemm, Sven, and Michele Morra. "LQR-Assisted Whole-Body Control of a Wheeled Robot with Dynamic
Constraints." https://www.semanticscholar.org/paper/LQR-Assisted-Whole-Body-Control-of-a-Wheeled-Robot-
Klemm-Morra/0a273213ba54¢13bcb083c88625dc68f3276fd3c.

[10] Klemm, Victor, et al. "Ascento: A Two-Wheeled Jumping robot." IEEE 2019 International Conference on
Robotics and Automation (ICRA).

[11] Xin, Songyan, and Vijayakumar, Sethu. "Online Dynamic Motion Planning and Control for Wheeled Biped
Robots." arXiv.org, 7 Mar 2020. arxiv.org/abs/2003.03678.

[12] Chen, Hua, et al. "Underactuated Motion Planning and Control for Jumping with Wheeled-Bipedal Robots."
arXiv.org. 11 Dec. 2020. arxiv.org/pdf/2012.06156.pdf.

	Introduction
	Motivation
	Prior Work

	Implementation
	Robot
	Simulation: Isaac Gym
	Sim-to-Real Transfer
	System Identification
	Domain Randomization
	Policy Deployment

	Results
	Simulation Results
	Real World Results

	Conclusions
	Limitations
	Future Work

	Contributions and Acknowledgements
	Contributions
	Gabrael Levine
	Selena Sun

	Acknowledgements
	Rafael Rafailov (CS224R project mentor)
	Wenhao Yu (Google DeepMind)
	Zipeng Fu (SAIL)

