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Abstract

We built and deployed an autonomous underwater vehicle
(AUV) for environmental monitoring at Lake Tahoe, Cal-
ifornia. Our system performs underwater video collec-
tion and 3D reconstruction using Neural Radiance Fields
(NeRFs), combined with real-time environmental data col-
lection. Our preprocessing pipeline enabled COLMAP to
register 70-85% of camera poses from underwater video
sequences. Compared to traditional human-diver pho-
togrammetry operations costing approximately $2,500 for
a 10 ft×10 ft underwater survey, our AUV achieves com-
parable reconstruction quality for under $600 per deploy-
ment—a 76% cost reduction. Additionally, our AUV au-
tonomously collects environmental monitoring data includ-
ing eDNA samples, temperature, salinity, and pressure mea-
surements. To our knowledge, this represents the first au-
tonomous underwater vehicle capable of complete video-
to-3D reconstruction workflows. Our design, open-sourced
at stanfordrobosub.org, enables scalable, recurring ecolog-
ical monitoring for climate research and biodiversity as-
sessment.

1. Introduction

The underwater environment presents compounding techni-
cal challenges. Each subsystem of a submarine faces unique
challenges: the software stack must handle localization un-
certainty and visual occlusion, electronic components must
be sealed tightly in the payload, and mechanical compo-
nents must be corrosion-proof and depth-rated. These chal-
lenges are worth overcoming: the ocean covers 70% of

Earth’s surface, yet remains largely unexplored, particularly
at depth. We started building our AUV, named Crush (after
the sea turtle in Finding Nemo) in October 2024 with the
mission of exploring the ocean, performing environmen-
tal surveying tasks, and collecting data on marine ecosys-
tems. Crush (Figure 1) was engineered with reliability and
modularity in mind, with the goal of serving as a long-term
testbed for scientific exploration.

1.1. Research Orientation

Crush has been deployed as a mobile research platform for
environmental monitoring. In collaboration with Monterey
Bay Aquarium Research Institute (MBARI) and the Tahoe
Environmental Research Center (TERC), we identified a
critical need for high-resolution spatial data—information
typically collected only during expensive diving expeditions
requiring heavy equipment and human divers. We built
Crush to lower this cost barrier, enabling more frequent
monitoring of marine ecosystems.

Figure 1. Crush on the docks at Lake Tahoe.



Figure 2. CAD model of Crush.

1.2. Lake Tahoe Deployment

Lake Tahoe provides an ideal deployment site due to in-
creasing anthropogenic pressures that drive changes in bio-
diversity and water turbidity, necessitating close ecological
monitoring [9]. The lake also faces threats from invasive
species such as Asian clams, Metaphyton, and New Zeland
mud snails that alter benthic habitats[3][5][16]. Field de-
ployments in Lake Tahoe demonstrated the utility of our
design under challenging conditions. Strong currents, rocky
formations, and stratified water layers created a demanding
testbed where Crush successfully operated, enabling high-
resolution mapping, abiotic sensing, and real-time 3D vi-
sualization through splat-rendered previews. These capa-
bilities show how an accessible AUV platform can advance
climate and ecosystem monitoring research. For example,
while recent work in Lake Tahoe examines periphyton as-
semblages and relative abundance [10], fine-scale spatial
and temporal relationships between benthic habitat and al-
gal assemblages remain underexplored. Our approach sup-
ports this research direction by integrating high-resolution
3D reconstructions of benthic habitats with local biotic sam-
pling, providing a richer foundation for assessing ecological
and aquatic dynamics.

Figure 3. Crush operating autonomously in Lake Tahoe during 3D
reconstruction trials, demonstrating stable navigation in complex
underwater terrain.

2. Related Work
Underwater 3D reconstruction presents unique challenges
that distinguish it from terrestrial computer vision appli-
cations. Limited visibility, color attenuation, backscatter,
and refractive distortion create conditions where traditional
reconstruction methods often fail. We review existing ap-
proaches and justify our selection of Neural Radiance Fields
as the optimal technique for autonomous underwater sur-
veying.

2.0.1. Monocular depth estimation.
Estimating depth from a single image has advanced rapidly
with dataset mixing and transformer backbones. MiDaS
popularized robust, cross-dataset monocular depth via scale
and shift-invariant objectives and dataset aggregation [11].
Subsequently, DPT showed that vision transformers im-
prove global coherence and detail for dense prediction,
including monocular depth [12]. In practice, monocu-
lar predictions are metric-ambiguous and exhibit per-frame
scale/shift drift; many systems therefore align depth to aux-
iliary cues (e.g., SLAM, IMU) or enforce temporal regular-
ization during fusion.

2.0.2. Camera motion, pose, and structure.
For image pose estimation, classical SfM pipelines such as
COLMAP remain highly effective through robust matching,
global pose optimization, and multi-view dense stereo [14].
Learned SLAM systems such as DROID-SLAM combine
recurrent updates with dense bundle adjustment for accu-
rate, temporally consistent trajectories across monocular,
stereo, and RGB-D settings [15]. In underwater deploy-
ments, additional issues arise (backscatter, attenuation, re-
fractive effects at housings), often motivating auxiliary nav-
igation sensors and domain-specific photometric models.

2.1. NeRFs
Neural Radiance Fields (NeRFs) [8] represent a scene as
a continuous volumetric function parameterized by a neu-
ral network, and render novel views by integrating densities
and colors along camera rays. While NeRFs have demon-
strated remarkable performance in photorealistic novel view
synthesis [2, 7], they depend critically on accurate multi-
view camera poses, often obtained through structure-from-
motion systems such as COLMAP [14]. In our exper-
iments, pre-processing of the video data (including con-
trast enhancement for turbid water conditions [1, 6, 13],
frame subsampling to increase inter-frame motion, and his-
togram equalization) enabled COLMAP to consistently ex-
tract more than 70% of camera poses from the video se-
quences (most directly due to color enhancement).

2.2. SLAM
We also explored alternative methods for camera pose esti-
mation directly from the input video, such as ORB-SLAM3



[4]. SLAM systems offer the potential for real-time pose
tracking and could provide complementary pose estimation
capabilities. While we explored SLAM, localization inac-
curacies during our data collection period made this ap-
proach infeasible for the time being.

3. Methods

3.1. System Architecture Overview
Crush integrates autonomous navigation, environmental
sensing, and 3D reconstruction through a modular ROS 2
architecture designed for reliable underwater operation
(Figure 4).

Figure 4. System architecture showing integrated autonomous
navigation, perception, and 3D reconstruction pipeline with real-
time uncertainty assessment for adaptive re-exploration.

3.1.1. ROS2 Software Stack
Our autonomy stack organizes functionality into four pri-
mary packages:

Planning and Control: The planning node gener-
ates waypoints and continuous trajectory commands. A
control module implements PID-based trajectory track-
ing with adaptive gains. Manual teleoperation provides
safety override capabilities.

Hardware Interface: Low-level drivers interface with
the Arduino thruster controller, Teledyne DVL, and XSens
IMU. Real-time sensor fusion combines inertial and veloc-
ity measurements for state estimation with outlier rejection.

Perception: The perception package processes syn-
chronized stereo camera feeds through YOLO-based ob-
ject detection and MiDaS depth estimation. Preprocessing
algorithms enhance underwater imagery through contrast-
limited adaptive histogram equalization (CLAHE) and color
correction.

Reconstruction: The reconstruction pack-
age implements autonomous 3D reconstruction. The
nerf trainer extracts video frames and camera poses
from COLMAP preprocessing to train Neural Radiance

Field models. The nerf analyzer assesses reconstruc-
tion quality, identifying low-confidence regions for targeted
re-exploration.

3.2. Hardware Platform
Crush employs a torpedo-style hull with aluminum frame
supporting modular payload mounting. Six-degree-of-
freedom control utilizes eight thrusters enabling precise ma-
neuvering.

Compute Architecture: Teensy 4.1 microcontroller man-
ages thruster actuation and safety systems at 100 Hz.
NVIDIA Jetson Orin AGX provides GPU acceleration for
perception and reconstruction pipelines at 30 Hz.

Sensor Integration: XSens MTi-200 IMU, Teledyne
DVL, dual Oak-D S2 stereo cameras, environmental sensors
(temperature, salinity, pressure), and eDNA sampling sys-
tem provide comprehensive navigation and scientific data
collection.

3.3. Autonomous 3D Reconstruction Pipeline
3.3.1. Video Preprocessing
Underwater imaging requires specialized preprocessing:
distance-dependent color correction restores natural color
balance, CLAHE enhances local contrast while preventing
noise amplification, and adaptive frame sampling selects
optimal baseline separation while avoiding motion blur.
This pipeline enables COLMAP to register 70-85% of in-
put frames versus 20-30% for raw underwater video.

3.3.2. COLMAP and NeRF Training
Camera pose estimation uses COLMAP’s Structure-from-
Motion pipeline optimized for underwater conditions. We
implement sequential matching for superior geometric con-
sistency over exhaustive matching. NeRF training utilizes
camera poses and preprocessed images with underwater-
specific volume rendering incorporating water attenuation
models.

3.3.3. Autonomous Re-exploration
Real-time reconstruction quality assessment enables adap-
tive surveying through uncertainty-based re-exploration:

s(vi) =
u(vi)

1 + αd(vi)
, (1)

where u(vi) is reconstruction uncertainty for voxel vi,
d(vi) is distance from current position, and α controls
exploration-efficiency trade-off. Uncertainty estimation
uses ensemble methods with bootstrap sampling, mea-
suring prediction variance across multiple NeRF models.
High-scoring voxels generate waypoints for autonomous re-
exploration, optimizing trajectories considering vehicle dy-
namics and battery constraints.



3.4. Environmental Data Collection
Crush autonomously collects environmental monitoring
data including temperature, salinity, pressure, and eDNA
samples. All sensor data logs through ROS 2 with GPS-
synchronized timestamps, enabling spatial-temporal corre-
lation between environmental measurements and 3D recon-
structions for comprehensive ecosystem analysis.

4. Results and Discussion
We conducted extensive field trials of Crush at Lake Tahoe,
California, demonstrating successful autonomous underwa-
ter 3D reconstruction and environmental monitoring capa-
bilities.

4.1. 3D Reconstruction Performance
We successfully reconstructed high-fidelity 3D models of
submerged features using video data collected during au-
tonomous circumnavigation missions. Figure 5 shows the
reconstructed NeRF of a representative submerged rock for-
mation.

Figure 5. NeRF of the submerged rock.

Figure 6. RGB camera frame of the submerged rock used for re-
construction.

4.1.1. COLMAP Pose Estimation Analysis
Our preprocessing pipeline substantially improves frame
registration: raw video (28% success) → CLAHE enhance-
ment (52%) → full preprocessing pipeline (78%).

A persistent issue we faced was the difficulty of obtain-
ing reliable COLMAP reconstructions from raw underwa-
ter video. The combination of turbidity, backscatter, and
color attenuation led to low-contrast imagery where tra-
ditional keypoint detectors often failed. We found that
applying contrast-limited adaptive histogram equalization
(CLAHE) and related color-correction methods substan-
tially improved feature extraction, allowing more frames to
be registered successfully. Figures 7 shows our two most
successful COLMAP runs.

Figure 7. Comparison of COLMAP results using the sequential
matcher (left) vs the exhaustive matcher (right).

4.2. Cost Reduction
With input from expert field researchers, we estimate that
the cost of using human photogrammetry to perform our
rock reconstruction task is $2.5k (cost breakdown in Ta-
ble 1). In contrast, our robot can be deployed for the same
task for less than $100. We arrive at this figure by proving,
during operation, that 2 people are paid $50/hour, and can
complete this task within an hour. Adding on the $600 in
boat costs, this results in a 76% cost reduction in 3D recon-
struction of underwater features.

Table 1. Approximate Cost Breakdown for a 10 ft × 10 ft Human-
Conducted Photogrammetry Survey

Cost Component Cost (USD)
Boat Rental & Fuel $500
Diver Time (setup & capture) $1000
Photogrammetry Equipment (rental/dep.) $500
Data Processing & Cleanup $500
Total $2,500

5. Future Work
This paper demonstrates a proof-of-concept of 3D recon-
struction of objects captured by Crush during underwater
surveys. As such, future efforts would be focused on further
refinement of the proposed method, including direct quali-
tative comparison against prior techniques such as ORB-
SLAM3 or DROID-SLAM as well as ablation studies. Ad-
ditionally, another future direction of inquiry includes uti-
lizing existing onboard localization or more modern feature



extraction and matching methods to replace COLMAP.
Recurrent surveys of the same sites in Lake Tahoe or

other freshwater environments could yield temporal 3D re-
constructions, allowing researchers to track habitat change,
substrate erosion, or algal growth with fine spatial reso-
lution. Each surveying trip with our AUV costs 24% of
the cost of a traditional photogrammetry survey, turning
once-prohibitive longitudinal studies into a routine scien-
tific practice. When combined with environmental DNA
(eDNA) sampling, such surveys could correlate structural
changes in terrain with shifts in biological communities,
providing a multi-modal perspective on ecosystem health.
This integration of geometric mapping and genetic monitor-
ing has the potential to create powerful new tools for study-
ing invasive species, biodiversity trends, and the impacts of
climate change on aquatic environments.
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